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Robust face recognition under uncontrolled illumination conditions is an important problem for real 
face recognition systems. In this paper, we introduce a novel illumination-robust local descriptor named 
Sparse Linear Regression Binary (SLRB) descriptor. The SLRB descriptor is a bit string by binarizing the 
sparse linear regression coefficients in a local block. It is an illumination-insensitive descriptor based on 
the locally linear consistency assumption under the Lambertian reflectance model. We use the cosine 
similarity and Hamming similarity as the similarity measure for the SLRB descriptor of two different 
images respectively. Experimental results on the Extended Yale-B and CMU-PIE face database show a 
promising performance compared to the existing representative approaches.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Face recognition has recently received a lot of attention and has 
been applied to the fields of entertainment, smart cards, informa-
tion security and law enforcement and surveillance [1]. Despite 
tremendous advance in face recognition has made, robust face 
recognition under uncontrolled illumination conditions is still chal-
lenging [2,3]. In recent years, there are a number of approaches 
for dealing with face image variations due to illumination changes. 
They can be roughly classified into four categories.

The first category attempts to handle the illumination nor-
malization problem with traditional image processing methods. 
Histogram Equalization (HE) obtains an image with a high dy-
namic range and a great deal of details based on information 
in the histogram [4]. Gamma Intensity Correction (GIC) was in-
troduced to normalize the overall image intensity at the given 
grey-level by Gamma transformation [5]. Logarithm Transform (LT) 
was proposed to perform illumination normalization in face im-
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ages under uncontrolled illumination conditions [6]. These meth-
ods are mainly based on intensity transformation and used as 
pre-processing methods.

Using the illumination samples, the second category learns the 
model of face images under varying illumination. In [7] the author 
made the explanation that arbitrary illumination conditions could 
be modeled by an image basis and showed that five eigenfaces suf-
fice to represent face images under a wide range of lighting con-
ditions. In [8], it showed the fact that a set of images of an object, 
which has a fixed pose under varying illumination conditions, form 
a convex illumination cone in the space of images. In [9], it was 
proved that the intensity of the object surface obtained with ar-
bitrary distance light sources spans a 9-dimension linear subspace 
based on a spherical harmonic representation. In [10], the authors 
propose a novel framework named Face Analysis for Commercial 
Entities (FACE) and adopt normalization (“correction”) strategies to 
address illumination variations. These methods depend on a statis-
tical model or a physical model, and can settle the illumination 
variations well. However, they require a large amount of train-
ing samples under varying illumination conditions in most cases, 
which makes them not practical for real face recognition systems.

The third category deals with illumination variations by re-
moving the illumination component. Jobson et al. introduced the 
Retinex approach to obtain the reflectance component by es-
timating the illumination component [11,12]. In [13] the au-
thor enhanced the illumination removal phase and used double-
density dual-tree complex wavelet transform (DD-DTCWT) filtering 

http://dx.doi.org/10.1016/j.dsp.2015.09.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:yangzd13@mails.tsinghua.edu.cn
mailto:wuyong11@mails.tsinghua.edu.cn
mailto:zhaowt13@mails.tsinghua.edu.cn
mailto:yicongzhou@umac.mo
mailto:luzq@sz.tsinghua.edu.cn
mailto:Li.Weifeng@sz.tsinghua.edu.cn
mailto:liaoqm@tsinghua.edu.cn
http://dx.doi.org/10.1016/j.dsp.2015.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2015.09.010&domain=pdf


270 Z. Yang et al. / Digital Signal Processing 48 (2016) 269–275
to extract the reflectance portion. Some methods were proposed 
to remove the illumination component in transformation domain 
as well, such as the Homomorphic filtering approach [14], discrete 
cosine transform in the logarithm domain [15], wavelet transform 
in the frequency domain [16], etc. These methods employ the fact 
that illumination is a low frequency component and can be applied 
to a single image without many training samples.

The forth category attempts to find a representation which is 
insensitive to illumination variations. Wang et al. defined the ratio 
of the albedo of one image as the Self-Quotient Image (SQI) which 
is independent of illumination [17]. In [18] the authors proposed 
the Relative Image Gradient (RIG) feature which is robust against 
to illumination variations. Gradientfaces takes the similar idea but 
utilizes the ratio between x-gradient and y-gradient [19]. Both RIG 
and Gradientfaces are extracted in the gradient domain and can be 
applied to a single sample. In addition, in [20] and [21], the au-
thors introduced the Weberface and Generalized Weberface (GWF) 
which employ the relative intensity difference between the center 
pixel and its neighborhoods derived from the Weber’s law. Most of 
the above methods make use of the Lambertian reflectance model 
and are based on the assumption that the illumination component 
is characterized by slow variations while the reflectance compo-
nent varies drastically.

Apart from the above methods that dedicate to illumination 
normalization, some approaches for texture classification have 
been employed for illumination-robust face recognition as well. 
Local Binary Pattern (LBP) [22] is one of the most commonly 
used methods. LBP is a local descriptor of texture which pro-
cesses the difference between the intensity of the center pixel and 
its neighborhoods with binary encoding. It has been widely ap-
plied to illumination-robust face recognition due to its tolerance 
of monotonic illumination variations and computational simplicity. 
Nevertheless, LBP is sensitive to noise when the image region is 
near-uniform. To improve the noise robustness, Local Ternary Pat-
tern (LTP) was proposed in [23], which utilized ternary encoding 
instead of binary encoding in LBP.

In this paper, we propose a novel local binary descriptor named 
the Sparse Linear Regression Binary (SLRB) descriptor based on the 
sparse linear regression. The SLRB descriptor is a bit string ob-
tained by binarizing the sparse linear regression coefficients in a 
local patch. We prove the SLRB descriptor to be robust to illumi-
nation based on the following assumptions.

1) The intensity of the center pixel, f (x0, y0), can be linearly 
expressed by these of its neighborhoods and the linear combina-
tion coefficients αi are consistent in a local block, which is similar 
to the assumption used in Locally Linear Embedding (LLE) [24]:

f (x0, y0) =
N∑

j=1

α j f (x j, y j) + ε, (1)

where (x0, y0) is the coordinate of the center pixel, (x j, y j) is the 
coordinate of the surrounding pixel and ε is the residual term.

2) The intensity of an image, f (x, y), can be expressed as 
the product of its illumination component, i(x, y), and reflectance 
component, r(x, y), which is indicated in [14]:

f (x, y) = i(x, y)r(x, y). (2)

In addition, the illumination component varies slowly while the 
reflectance component changes abruptly.

We summarize the characteristics of the proposed SLRB de-
scriptor as follows.

1) Based on the Lambertian reflection model, we can prove that 
the SLRB descriptor is an illumination-insensitive feature and can 
be effectively applied to illumination-robust face recognition com-
pared with the LBP and LTP features.
2) The SLRB descriptor is a bit string with a low dimension and 
we can simply employ the cosine distance and Hamming distance 
as similarity measures. Therefore, the SLRB descriptor is quite effi-
cient and requires less computation complexity than other meth-
ods.

3) The lasso regression [25] exhibits the stability of the ridge 
regression method. Binary encoding scheme is a common method 
in face recognition and can reduce local noise. As a result, the SLRB 
descriptor is robust to noise on account of lasso regression and 
binary encoding.

The rest of the paper is organized as follows. We present our 
SLRB descriptor, the illumination-robust face recognition algorithm 
based on the SLRB descriptor and prove its illumination robustness 
in the next section. In Section 3, we illustrate some experiments 
by applying our face recognition algorithm on the Extended Yale 
Face Database B and CMU-PIE face database. Finally, we conclude 
our paper in Section 4.

2. Sparse linear regression binary descriptor

2.1. Local descriptor based on linear regression

As mentioned above, suppose that the intensity of the center 
pixel is a linear combination of the intensity of its neighborhoods 
as Eq. (1). To obtain the linear combination coefficients, we make 
a further assumption that the linear combination coefficients are 
the same in a local block. In an N × N block, we suppose that 
the intensity of the center pixel is linearly expressed by that of 
the surrounding eight pixels in a patch. Then there are (N − 2)2

“center pixels” f (k), k = 1, · · · , (N − 2)2, that form a column vector, 
dependant variable f = [ f (1), f (2), · · · , f ((N−2)2)]T .

For each patch, we have

f (k) =
8∑

j=1

α j f (k)
j + εk

= xT
k α + εk, k = 1,2, · · · , (N − 2)2, (3)

where f (k)
j is the intensity of the j-th surrounding pixel of the 

k-th center pixel, the surrounding pixel vector xk = [ f (k)
1 , f (k)

2 , · · · ,
f (k)
8 ]T , and the linear regression coefficient vector α = [α1, α2, · · · ,

α8]T .
These (N − 2)2 equations can be stacked together and written 

as⎡
⎢⎢⎢⎣

f (1)

f (2)

...

f ((N−2)2)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

xT
1

xT
2
...

xT
(N−2)2

⎤
⎥⎥⎥⎥⎦α +

⎡
⎢⎢⎢⎣

ε1
ε2
...

ε(N−2)2

⎤
⎥⎥⎥⎦ . (4)

Eq. (4) can be reformulated as

f = Xα + ε, (5)

in which the surrounding pixel matrix X = [xT
1 , xT

2 , · · · , xT
(N−2)2 ]T

and the residual vector ε = [ε1, ε2, · · · , ε(N−2)2 ]T .
By solving Eq. (5), the linear regression coefficient vector α

would be determined as a descriptor of the current block. Fig. 1
illustrates the procedures of the linear regression coefficients in a 
block.

2.2. Sparse coefficients and binary encoding

Generally, we can determine the linear regression coefficient 
vector α by the ordinary least square (OLS) estimation:
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Fig. 1. Illustration of the SLRB descriptor in a block.

argmin
α

‖f − Xα‖2, (6)

which has the solution

α̂ = (XT X)−1XT f. (7)

Or address this problem by the ridge regression method for the 
underdetermined system of equations as

argmin
α

‖f − Xα‖2 + λ2‖α‖2 (8)

with the solution

α̂ = (XT X + λ2I)−1XT f, (9)

where λ2 is the �2-norm regularization parameter, and I is the 
identity matrix.

Furthermore, as [25] indicated, the lasso regression has a fur-
ther advantage over the ridge regression method of producing 
interpretable submodels and exhibits the stability of the ridge re-
gression method. Therefore, we employ the lasso regression for the 
solution of α instead:

argmin
α

‖f − Xα‖2 + λ1‖α‖1, (10)

where λ1 is the �1-norm regularization parameter. The lasso re-
gression tends to produce some sparse coefficients that exactly 
are 0 and gives a more interpretable descriptor of the local tex-
ture.

Subsequently, we adopt binary encoding of the sparse regres-
sion coefficients for further dimension reduction as the Sparse Lin-
ear Regression Binary (SLRB) descriptor β = [β1, β2, · · · , β8]T of the 
current image block:

β j =
{

1 if α j > μα

0 otherwise,
(11)

where μα is the mean of α.
Fig. 2 shows a face block of 6 × 6 with non-uniform illumina-

tion. We can obtain the SLRB descriptor β = [0, 0, 1, 0, 1, 0, 0, 1]T

and the L2-norm of the residual vector ‖ε‖ = 4.11, which is much 
smaller than the intensity of the pixels and can be ignored. For ev-
ery small block of 3 × 3, we can get an SLRB descriptor and the 
mean value of these 16 SLRB descriptors is μβ = [0, 0, 1, 0, 1, 0,

0.69, 1]T , which is almost the same as β and proves that our as-
sumption is reasonable.

2.3. Illumination robustness

As mentioned above, it is assumed that the intensity is the 
product of its illumination component, which is a constant in a 
local area approximatively, and reflectance component that rep-
resents the face feature as Eq. (2). It is easy to prove that the 
proposed SLRB descriptor is an illumination insensitive represen-
tation as follows.
Fig. 2. A face block with non-uniform illumination.

Fig. 3. The robustness to illumination variations of the SLBR descriptor under the 
Lambertian reflectance model. (a) and (d) are the same sample blocks under differ-
ent illumination conditions; (b) and (e) are the linear regression coefficients of (a) 
and (d) respectively; (c) and (f) are the SLRB descriptors, i.e., binary encoding of (b) 
and (e).

Combining Eq. (1) and Eq. (2), we have

i(x0, y0)r(x0, y0) =
N∑

j=1

α j i(x j, y j)r(x j, y j) + ε. (12)

Based on the assumption that the illumination component 
varies slowly in a local area, i.e.

i(x0, y0) ≈ i(x j, y j), (13)

Eq. (12) can be reformulated as follows by ignoring the residual 
term.

r(x0, y0) ≈
N∑

j=1

α jr(x j, y j) (14)

From Eq. (14), we prove that the linear regression coefficients 
are illumination insensitive representation. They depend only on 
the reflectance component and have nothing to do with the illu-
mination component. Thus the SLRB descriptor which is the binary 
encoding of the linear regression coefficients is robust to illumi-
nation variations as well. Fig. 3 shows an example of the SLRB 
descriptor against illumination variations. The original image block 
(a) is produced randomly with the size of 6 ×6 and (d) is the same 
image block with different illumination components. It is obvious 
that their linear regression coefficients ((b), (e)) and SLRB descrip-
tors ((c), (f)) are the same.

2.4. Computational efficiency

The SLRB descriptor is employed as an illumination-insensitive 
feature for face recognition. The face image is divided into some 
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Fig. 4. Illustration of feature extraction. The linear regression coefficients are calcu-
lated in each block and then concatenated. The feature is a bit string by binarizing 
the regression coefficients.

blocks in which the SLRB descriptor is calculated. Denote β(i) is the 
SLRB descriptor of the ith block, then the feature of a face image 
can be written as [β(1), β(2), · · · , β(M)]T , where M is the number 
of blocks. Then the feature is extracted which is a bit string with a 
low dimension. Fig. 4 illustrates the extraction of the feature based 
on the SLRB descriptor in a face image. Take an 8-bit gray-scale 
image with the size of 120 × 120 as an example. The features of 
LBP and LTP are 13 275 bits and 115 200 bits respectively while the 
feature based on the SLRB descriptor is 7200 bits when the size of 
blocks is 4 × 4 and 1800 bits when the block size is 8 × 8. They 
are 1/16 and 1/64 of the number of storage bits of the original 
image and much smaller than the features of LBP and LTP. There-
fore, the SLRB descriptor is very efficient to compute and requires 
less computation complexity than other methods.

In addition, the SLRB image can be defined for a further illustra-
tion. The SLRB image is calculated by assigning a binomial factor 2l

for the SLRB descriptor of the block centered on the current pixel, 
which is similar to the LBP image. Fig. 5 illustrates the LBP, LTP 
and SLRB images of four images under different illumination con-
ditions.

3. Experiments

3.1. Similarity measures

The SLRB descriptor of a face image is a bit string after binary 
encoding according to Eq. (11), thus we adopt the cosine similarity 
SC and Hamming similarity S H .

Suppose β(1) = [β(1)
1 , β(1)

2 , · · · , β(1)
L ]T and β(2) = [β(2)

1 , β(2)
2 , · · · ,

β
(2)
L ]T are two SLRB strings with length L. The cosine similarity is 

defined as

SC (β(1),β(2)) = 1

|β(1)||β(2)|
L∑

l=1

β
(1)

l β
(2)

l , (15)

which measures their similarity by their angles in an inner prod-
uct space. However, it just reflects how often 1 s coincide in each 
string. We employ another similarity using their Hamming dis-
tance D H which can be formulated as

D H (β(1),β(2)) =
L∑

|β(1)

l − β
(2)

l |. (16)

l=1
Fig. 5. Comparison of the LBP, LTP and SLRB images.

The maximum Hamming distance of two SLRB descriptors with 
length L is L. Therefore the Hamming similarity is defined as

S H (β(1),β(2)) =
(

1 − D H (β(1),β(2))

L

)2

. (17)

3.2. Experiment settings

Experiments are carried out on the Extended Yale Face Database 
B and CMU-PIE to illustrate the effectiveness of the SLRB descrip-
tor. The Extended Yale Face Database B is an updated version of 
the Yale Face Database B, containing 38 subjects with 9 poses and 
64 illumination conditions. The images are divided into five subsets 
according to the angle between the light source direction and the 
central camera axis. We utilized the images with the most neu-
tral light sources as the gallery and ones from the five subsets 
as probes. The CMU-PIE face database includes 68 subjects with 
41 368 images under variations in pose, illumination and expres-
sion. We chose the illumination subset (1425 images of 68 subjects 
under illumination from 21 directions) in our experiments. One 
image per subject were chosen as the gallery each time and the 
others were used as the probes. All face images were properly 
aligned, cropped and resized to 120 × 120 in the experiments.

Each image is divided into several blocks with the sizes 4 × 4, 
5 × 5, 6 × 6, 7 × 7 to obtain the SLRB features. The �1-norm reg-
ularization parameter and the �2-norm regularization parameter 
are set 1. We determine the linear regression coefficient vector α
by three methods: the OLS estimation, ridge regression and SLRB 
(lasso regression), which are denoted as “OLS”, “RR” and “SLRB” re-
spectively. We also overlap adjacent blocks to obtain more robust 
features which are denoted as “OLSo”, “RRo” and “SLRBo” respec-
tively.1 We adopt the cosine similarity and Hamming similarity 
which are denoted as “SLRBc” and “SLRBh” respectively. The SLRB 

1 In our experiments, the size of overlap areas is half of the blocks. For odd-size 
blocks, we round towards plus infinity.
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Table 1
Recognition rates (%) on extended Yale Face Database B with cosine similarity.

cos 4 × 4 5 × 5 6 × 6 7 × 7

OLS 88.11 70.07 75.99 74.95
RR 87.48 89.24 85.95 83.42
SLRB 86.09 89.17 90.06 87.35
OLSo 89.92 79.07 83.38 80.88
RRo 88.84 90.11 88.21 85.43
SLRBo 88.44 90.58 91.93 89.15

Table 2
Recognition rates (%) on extended Yale Face Database B with Hamming similarity.

ham 4 × 4 5 × 5 6 × 6 7 × 7

OLS 88.61 70.46 76.87 75.11
RR 87.24 89.15 86.32 83.75
SLRB 86.66 87.76 88.37 85.06
OLSo 90.09 79.95 83.59 82.45
RRo 88.35 90.36 88.73 85.83
SLRBo 89.07 89.32 91.20 88.46

Table 3
Recognition rates (%) on extended Yale Face Database B.

Methods Subset

S1 S2 S3 S4 S5 Average

LBP 100 100 96.92 61.03 34.87 78.56
LTP 100 100 97.80 76.62 58.40 86.56
SLRBc 100 100 91.42 83.65 84.59 91.93
SLRBh 100 100 87.03 83.26 85.71 91.20

methods are compared with the LBP and LTP methods. We use the 
nearest neighborhood rule with �2-norm as the classifier.

3.3. Experimental results

Table 1 and Table 2 show recognition rates on the Extended 
Yale Face Database B with the cosine similarity and Hamming 
similarity respectively. SLRB (lasso regression) is superior to other 
two methods. The overlap method achieves better results. Table 3
shows the SLRB recognition performance on the five subsets of 
the Extended Yale Face Database B, the SLRB descriptor with co-
sine similarity achieves 13.37% and 5.37% higher than LBP and 
LTP respectively. The recognition rate of the SLRB method in the 
third subset containing face images with relatively good illumina-
tion is lower than those of LBP and LTP. It shows that our SLRB 
descriptor tends to perform better in removing the influence of 
the illumination changes with a modest ability for the controlled 
face recognition. It may be caused by the information loss when 
employing the binary encoding and the limited number of feature 
patterns when utilizing lasso regression. However in the last two 
subsets SLRB performs significantly better than LBP and LTP, which 
demonstrates its robustness to the severe illumination degradation. 
It is noticeable that out proposed methods perform comparably for 
subsets 4 and 5 (subset 5 even slightly better than subset 4). This 
may be explained in Fig. 6 by the fact that the cosine distance 
between (a) and (b) is a little bigger than the cosine distance be-
tween (a) and (c). Fig. 7 illustrates the rank-10 average recognition 
rate on the Extended Yale Face Database B. Our method achieves a 
more stable and satisfactory result than the other two.

The recognition rates of different methods on the CMU-PIE face 
database are illustrated in Table 4. The SLRB descriptor achieves 
the highest recognition rates which illustrates the advantage of 
our methods. Furthermore, we explore the performance of the pro-
posed method when changing the face images with various illumi-
nation conditions as gallery images. Fig. 8 shows the recognition 
rates of different methods for each gallery on the CMU-PIE face 
database. The SLRB descriptor can significantly improve the recog-
Fig. 6. (a) Gallery image; (b) a probe image in subset 4; (c) a probe image in sub-
set 5. The cosine distance between (a) and (b) is 0.67 while the cosine distance 
between (a) and (c) is 0.65.

Fig. 7. The rank-10 recognition rate on the Extended Yale Database B using LBP, LTP 
and SLRB.

Table 4
Recognition rates (%) on CMU-PIE.

LBP LTP SLRBc SLRBh

86.93 88.15 92.34 92.02

nition performance compared to LBP and LTP, especially when the 
gallery image is with severe illumination conditions.

Fig. 9 demonstrates the robustness to noise of different descrip-
tors on the Extended Yale Face Database B. The white Gaussian 
noise with different variances (0.001, 0.002, 0.003, 0.004, 0.005) 
were added to the probe images. The recognition rate of SLRB 
drops about 20% while LTP drops 65% and LBP drops 75%. Our 
method shows more robustness to the noise due to the result of 
sparse regression and binary encoding.

One of our SLRB advantages is computational efficiency so we 
compare the CPU time on the Extended Yale Face Database B of 
SLRB with other algorithms. For an 8-bit gray-scale image with the 
size 120 × 120, the features of LBP and LTP are 13 275 bits and 
115 200 bits separately while the features based on the SLRB and 
SLRBo descriptors are 3200 bits and 12 800 bits separately when 
the size of blocks is 6 ×6. The results are illustrated in Table 5 from 
which we could conclude that our method is more computationally 
efficient than other algorithms since the SLRB descriptor is a bit 
string with a low dimension and the SLRBo descriptor sacrifices 
computational efficiency for a higher recognition rate.

4. Conclusion

The SLRB descriptor has been proposed based on the assump-
tion of locally linear consistency and Lambertian reflectance model 
in this paper. It is an illumination-insensitive representation and 
shows more robust to noise on account of the sparse regres-
sion and binary encoding. Experimental results on Extended Yale-B 
Database and CMU-PIE Database have shown that our approach 
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Fig. 8. Recognition rates versus different gallery images with various illumination conditions.
Fig. 9. Illustration of the robustness to illumination variations with different meth-
ods on the Extended Yale Database B.

Table 5
Average CPU time (in ms) per image on extended Yale Face Database B.

LBP LTP SLRB SLRBo

15.0 13.4 6.8 26.8

yields better performance than several other approaches. However 
it has some drawbacks. Because of the nature of the bit-string ar-
rangement, our method is not invariant to spatial transformation 
and requires a precise registration process. The SLRB descriptor is 
designed for bad illumination conditions and has a modest ability 
for the controlled face recognition. We will consider these as the 
direction of our future work.
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